Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.518
Filtrar
1.
Commun Biol ; 7(1): 417, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580813

RESUMO

The concept of agonist-independent signalling that can be attenuated by inverse agonists is a fundamental element of the cubic ternary complex model of G protein-coupled receptor (GPCR) activation. This model shows how a GPCR can exist in two conformational states in the absence of ligands; an inactive R state and an active R* state that differ in their affinities for agonists, inverse agonists, and G-protein alpha subunits. The proportion of R* receptors that exist in the absence of agonists determines the level of constitutive receptor activity. In this study we demonstrate that mechanical stimulation can induce ß2-adrenoceptor agonist-independent Gs-mediated cAMP signalling that is sensitive to inhibition by inverse agonists such as ICI-118551 and propranolol. The size of the mechano-sensitive response is dependent on the cell surface receptor expression level in HEK293G cells, is still observed in a ligand-binding deficient D113A mutant ß2-adrenoceptor and can be attenuated by site-directed mutagenesis of the extracellular N-glycosylation sites on the N-terminus and second extracellular loop of the ß2-adrenoceptor. Similar mechano-sensitive agonist-independent responses are observed in HEK293G cells overexpressing the A2A-adenosine receptor. These data provide new insights into how agonist-independent constitutive receptor activity can be enhanced by mechanical stimulation and regulated by inverse agonists.


Assuntos
Agonistas Adrenérgicos beta , Agonismo Inverso de Drogas , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Transdução de Sinais , Ligantes , Receptores Adrenérgicos
2.
PLoS One ; 19(2): e0296407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422047

RESUMO

To improve animal performance and modify growth by increasing lean tissue accretion, beef cattle production has relied on use of growth promoting technologies such as beta-adrenergic agonists. These synthetic catecholamines, combined with the variable inclusion of rumen degradable (RDP) and undegradable protein (RUP), improve feed efficiency and rate of gain in finishing beef cattle. However, research regarding the impact of beta-adrenergic agonists, protein level, and source on the ruminal microbiome is limited. The objective of this study was to determine the effect of different protein concentrations and beta-adrenergic agonist (ractopamine hydrochloride; RAC) on ruminal bacterial communities in finishing beef heifers. Heifers (n = 140) were ranked according to body weight and assigned to pens in a generalized complete block design with a 3 × 2 factorial arrangement of treatments of 6 different treatment combinations, containing 3 protein treatments (Control: 13.9% CP, 8.9% RDP, and 5.0% RUP; High RDP: 20.9% CP, 14.4% RDP, 6.5% RUP; or High RUP: 20.9% CP, 9.7% RDP, 11.2% RUP) and 2 RAC treatments (0 and 400 mg/day). Rumen samples were collected via orogastric tubing 7 days before harvest. DNA from rumen samples were sequenced to identify bacteria based on the V1-V3 hypervariable regions of the 16S rRNA gene. Reads from treatments were analyzed using the packages 'phyloseq' and 'dada2' within the R environment. Beta diversity was analyzed based on Bray-Curtis distances and was significantly different among protein and RAC treatments (P < 0.05). Alpha diversity metrics, such as Chao1 and Shannon diversity indices, were not significantly different (P > 0.05). Bacterial differences among treatments after analyses using PROC MIXED in SAS 9 were identified for the main effects of protein concentration (P < 0.05), rather than their interaction. These results suggest possible effects on microbial communities with different concentrations of protein but limited impact with RAC. However, both may potentially act synergistically to improve performance in finishing beef cattle.


Assuntos
Dieta , Digestão , Bovinos , Animais , Feminino , Dieta/veterinária , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas na Dieta/farmacologia , Proteínas na Dieta/metabolismo , Rúmen/metabolismo , Bactérias/metabolismo , Agonistas Adrenérgicos beta/farmacologia
3.
Pflugers Arch ; 476(3): 407-421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253680

RESUMO

25-Hydroxycholesterol (25HC) is a biologically active oxysterol, whose production greatly increases during inflammation by macrophages and dendritic cells. The inflammatory reactions are frequently accompanied by changes in heart regulation, such as blunting of the cardiac ß-adrenergic receptor (AR) signaling. Here, the mechanism of 25HC-dependent modulation of responses to ß-AR activation was studied in the atria of mice. 25HC at the submicromolar levels decreased the ß-AR-mediated positive inotropic effect and enhancement of the Ca2+ transient amplitude, without changing NO production. Positive inotropic responses to ß1-AR (but not ß2-AR) activation were markedly attenuated by 25HC. The depressant action of 25HC on the ß1-AR-mediated responses was prevented by selective ß3-AR antagonists as well as inhibitors of Gi protein, Gßγ, G protein-coupled receptor kinase 2/3, or ß-arrestin. Simultaneously, blockers of protein kinase D and C as well as a phosphodiesterase inhibitor did not preclude the negative action of 25HC on the inotropic response to ß-AR activation. Thus, 25HC can suppress the ß1-AR-dependent effects via engaging ß3-AR, Gi protein, Gßγ, G protein-coupled receptor kinase, and ß-arrestin. This 25HC-dependent mechanism can contribute to the inflammatory-related alterations in the atrial ß-adrenergic signaling.


Assuntos
Adrenérgicos , Átrios do Coração , Hidroxicolesteróis , Camundongos , Animais , Adrenérgicos/metabolismo , Átrios do Coração/metabolismo , Receptores Adrenérgicos beta , Receptores Adrenérgicos beta 2/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/farmacologia
4.
Nature ; 625(7993): 175-180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093006

RESUMO

Oxytocin (OXT), a nine-amino-acid peptide produced in the hypothalamus and released by the posterior pituitary, has well-known actions in parturition, lactation and social behaviour1, and has become an intriguing therapeutic target for conditions such as autism and schizophrenia2. Exogenous OXT has also been shown to have effects on body weight, lipid levels and glucose homeostasis1,3, suggesting that it may also have therapeutic potential for metabolic disease1,4. It is unclear, however, whether endogenous OXT participates in metabolic homeostasis. Here we show that OXT is a critical regulator of adipose tissue lipolysis in both mice and humans. In addition, OXT serves to facilitate the ability of ß-adrenergic agonists to fully promote lipolysis. Most surprisingly, the relevant source of OXT in these metabolic actions is a previously unidentified subpopulation of tyrosine hydroxylase-positive sympathetic neurons. Our data reveal that OXT from the peripheral nervous system is an endogenous regulator of adipose and systemic metabolism.


Assuntos
Tecido Adiposo , Lipólise , Neurônios , Ocitocina , Animais , Humanos , Camundongos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Lipólise/efeitos dos fármacos , Neurônios/metabolismo , Ocitocina/metabolismo , Ocitocina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Bioorg Med Chem Lett ; 97: 129562, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967654

RESUMO

ß2-Adrenergic receptor (ß2AR) agonists have been reported to stimulate glucose uptake (GU) by skeletal muscle cells and are therefore highly interesting as a possible treatment for type 2 diabetes (T2D). The chirality of compounds often has a great impact on the activity of ß2AR agonists, although this has thus far not been investigated for GU. Here we report the GU for a selection of synthesized acyclic and cyclic ß-hydroxy-3-fluorophenethylamines. For the N-butyl and the N-(2-pentyl) compounds, the (R) and (R,R) (3d and 7e) stereoisomers induced the highest GU. When the compounds contained a saturated nitrogen containing 4- to 7-membered heterocycle, the (R,R,R) enantiomer of the azetidine (8a) and the pyrrolidine (9a) had the highest activity. Altogether, these results provide pivotal information for designing novel ß2AR agonist for the treatment of T2D.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Diabetes Mellitus Tipo 2 , Humanos , Agonistas Adrenérgicos , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Agonistas Adrenérgicos beta/química , Agonistas Adrenérgicos beta/farmacologia , Aminas , Transporte Biológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose , Receptores Adrenérgicos beta 2/metabolismo
6.
J Pharmacol Exp Ther ; 388(2): 688-700, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38129128

RESUMO

The determination of affinity by using functional assays is important in drug discovery because it provides a more relevant estimate of the strength of interaction of a ligand to its cognate receptor than radioligand binding. However, empirical evidence for so-called, "functional affinity" is limited. Herein, we determined whether the affinity of carvedilol, a ß-adrenoceptor antagonist used to treat heart failure that also promotes extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation, differed between these two pharmacological activities. Four structurally related ß-adrenoceptor antagonists (alprenolol, carazolol, pindolol, propranolol) that also activated ERK1/2 were included as comparators to enhance our understanding of how these drugs work in the clinical setting. In HEK293 cells stably expressing the human ß 2-adrenoceptor carvedilol and related aryloxypropanolamines were partial agonists of ERK1/2 phosphorylation with potencies ([A]50s) that were lower than their equilibrium dissociation constants (K Bs) as ß 2-adrenoceptor antagonists. As the [A]50 of a partial agonist is a good approximation of its K B, then these data indicated that the affinities of carvedilol and related ligands for these two activities were distinct. Moreover, there was a significant negative rank order correlation between the [A]50 of each ligand to activate ERK1/2 and their intrinsic activities (i.e., as intrinsic activity for ERK1/2 phosphorylation increased, so did affinity). Genome editing revealed that the transducer that coupled the ß 2-adrenoceptor to ERK1/2 phosphorylation in response to carvedilol and other ß 2-adrenoceptor antagonists was Gαs. Collectively, these data support the concept of "functional affinity" and indicate that the ability of the ß 2-adrenoceptor to recruit Gαs may influence the affinity of the activating ligand. SIGNIFICANCE STATEMENT: In HEK293 cells overexpressing the human ß2-adrenoceptor carvedilol and four related aryloxypropanolamines behaved as ß2-adrenoceptor antagonists and partial agonists of ERK1/2 phosphorylation with rank orders of affinity that were distinct. These data imply that carvedilol and other ß-blockers can stabilize the ß2-adrenoceptor in different affinity conformations that are revealed when functionally distinct responses are measured. This is the basis for the pharmacological concept of "functional affinity."


Assuntos
Sistema de Sinalização das MAP Quinases , Propanolaminas , Humanos , Carvedilol/farmacologia , Células HEK293 , Fosforilação , Ligantes , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Propanolaminas/farmacologia
7.
Eur J Pharmacol ; 958: 176045, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37708986

RESUMO

It was suggested that impaired ß-adrenergic relaxation in spontaneously hypertensive rats (SHR) might contribute to their high blood pressure (BP). Our study was focused on isoprenaline-induced dilatation of conduit femoral or resistance mesenteric arteries and on isoprenaline-induced BP reduction in SHR and Wistar-Kyoto rats (WKY). We confirmed decreased ß-adrenergic relaxation of SHR femoral arteries due to the absence of its endothelium-independent component, whereas endothelium-dependent component of ß-adrenergic smooth muscle relaxation was similar in both strains. Conversely, isoprenaline-induced relaxation of resistance mesenteric arteries was similar in both strains and this was true for endothelium-dependent and endothelium-independent components. We observed moderately reduced sensitivity of SHR mesenteric arteries to salmeterol (ß2-adrenergic agonist) and this strain difference disappeared after endothelium removal. However, there was no difference in mesenteric arteries relaxation by dobutamine (ß1-adrenergic agonist) which was independent of endothelium. The increasing isoprenaline doses elicited similar BP decrease in both rat strains, although BP sensitivity to isoprenaline was slightly decreased in SHR. The blockade of cyclooxygenase (indomethacin) and NO synthase (L-NAME) further reduced BP sensitivity to isoprenaline in SHR. On the other hand, salmeterol elicited similar BP decrease in both strains and the blockade of cyclooxygenase and NO synthase increased BP sensitivity to salmeterol in SHR as compared to WKY. In conclusion, attenuated ß-adrenergic vasodilatation of conduit arteries of SHR but similar ß-adrenergic relaxation of resistance mesenteric arteries from WKY and SHR and their similar BP response to ß-adrenergic agonists do not support major role of altered ß-adrenergic vasodilatation for high BP in genetic hypertension.


Assuntos
Adrenérgicos , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Isoproterenol/farmacologia , Prostaglandina-Endoperóxido Sintases , Artérias Mesentéricas , Agonistas Adrenérgicos beta/farmacologia , Óxido Nítrico Sintase , Xinafoato de Salmeterol , Endotélio Vascular , Resistência Vascular
8.
Diab Vasc Dis Res ; 20(4): 14791641231197106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37589258

RESUMO

Background: Long-term ß-adrenergic receptor (ß-AR) activation can impair myocardial structure and function. Dapagliflozin (DAPA) has been reported to improve clinical prognosis in heart failure patients, whereas the exact mechanism remains unclear. Here, we investigated the effects of DAPA against ß-AR overactivation toxicity and explored the underlying mechanism.Methods and Results: Rats were randomized to receive saline + placebo, isoproterenol (ISO, 5 mg/kg/day, intraperitoneally) + placebo, or ISO + DAPA (1 mg/kg/day, intragastrically) for 2-week. DAPA treatment improved cardiac function, alleviated myocardial fibrosis, prevented cardiomyocytes (CMs) apoptosis, and decreased the expression of ER stress-mediated apoptosis markers in ISO-treated hearts. In isolated CMs, 2-week ISO stimulation resulted in deteriorated kinetics of cellular contraction and relaxation, increased diastolic intracellular Ca2+ level and decay time constant of Ca2+ transient (CaT) but decreased CaT amplitude and sarcoplasmic reticulum (SR) Ca2+ level. However, DAPA treatment prevented abnormal Ca2+ handling and contractile dysfunction in CMs from ISO-treated hearts. Consistently, DAPA treatment upregulated the expression of SR Ca2+-ATPase protein and ryanodine receptor 2 (RyR2) but reduced the expression of phosphorylated-RyR2, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and phosphorylated-CaMKII in ventricles from ISO-treated rats.Conclusion: DAPA prevented myocardial remodeling and cardiac dysfunction in rats with ß-AR overactivation via restoring calcium handling and suppressing ER stress-related CMs apoptosis.


Assuntos
Cálcio , Receptores Adrenérgicos beta , Animais , Ratos , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Apoptose , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Miócitos Cardíacos , Receptores Adrenérgicos beta/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/farmacologia , Remodelação Ventricular
9.
Sci Rep ; 13(1): 7084, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127664

RESUMO

Intrahepatic nerves are involved in the regulation of metabolic reactions and hepatocyte-based regeneration after surgical resection, although their contribution to chronic liver injury remains unknown. Given that intrahepatic nerves are abundant in the periportal tissue, they may be correlated also with cholangiocyte-based regeneration. Here we demonstrate that isoproterenol (ISO), a ß-adrenergic receptor agonist, promoted ductular expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in vivo. Immunofluorescence analysis shows that nerve fibers positive for tyrosine hydroxylase form synaptophysin-positive nerve endings on epithelial cell adhesion molecule-positive (EpCAM+) cholangiocytes as well as on Thy1+ periportal mesenchymal cells (PMCs) that surround bile ducts, suggesting that the intrahepatic biliary tissue are targeted by sympathetic nerves. In vitro analyses indicate that ISO directly increases cAMP levels in cholangiocytes and PMCs. Mechanistically, ISO expands the lumen of cholangiocyte organoids, resulting in promotion of cholangiocyte proliferation, whereas it increases expression of fibroblast growth factor 7, a growth factor for cholangiocytes, in PMCs. Taken together, the results indicate that intrahepatic sympathetic nerves regulate remodeling of bile ducts during DDC-injury by the activation of ß-adrenergic receptors on cholangiocytes and PMCs.


Assuntos
Fígado , Piridinas , Fígado/metabolismo , Piridinas/farmacologia , Ductos Biliares/metabolismo , Agonistas Adrenérgicos beta/farmacologia
10.
J Mol Cell Cardiol ; 180: 33-43, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149124

RESUMO

ß-adrenergic (ß-AR) signaling is essential for the adaptation of the heart to exercise and stress. Chronic stress leads to the activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and protein kinase D (PKD). Unlike CaMKII, the effects of PKD on excitation-contraction coupling (ECC) remain unclear. To elucidate the mechanisms of PKD-dependent ECC regulation, we used hearts from cardiac-specific PKD1 knockout (PKD1 cKO) mice and wild-type (WT) littermates. We measured calcium transients (CaT), Ca2+ sparks, contraction and L-type Ca2+ current in paced cardiomyocytes under acute ß-AR stimulation with isoproterenol (ISO; 100 nM). Sarcoplasmic reticulum (SR) Ca2+ load was assessed by rapid caffeine (10 mM) induced Ca2+ release. Expression and phosphorylation of ECC proteins phospholambam (PLB), troponin I (TnI), ryanodine receptor (RyR), sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) were evaluated by western blotting. At baseline, CaT amplitude and decay tau, Ca2+ spark frequency, SR Ca2+ load, L-type Ca2+ current, contractility, and expression and phosphorylation of ECC protein were all similar in PKD1 cKO vs. WT. However, PKD1 cKO cardiomyocytes presented a diminished ISO response vs. WT with less increase in CaT amplitude, slower [Ca2+]i decline, lower Ca2+ spark rate and lower RyR phosphorylation, but with similar SR Ca2+ load, L-type Ca2+ current, contraction and phosphorylation of PLB and TnI. We infer that the presence of PKD1 allows full cardiomyocyte ß-adrenergic responsiveness by allowing optimal enhancement in SR Ca2+ uptake and RyR sensitivity, but not altering L-type Ca2+ current, TnI phosphorylation or contractile response. Further studies are necessary to elucidate the specific mechanisms by which PKD1 is regulating RyR sensitivity. We conclude that the presence of basal PKD1 activity in cardiac ventricular myocytes contributes to normal ß-adrenergic responses in Ca2+ handling.


Assuntos
Adrenérgicos , Agonistas Adrenérgicos beta , Miócitos Cardíacos , Proteína Quinase C , Animais , Camundongos , Adrenérgicos/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteína Quinase C/genética
11.
Biochem Biophys Res Commun ; 666: 45-51, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37178504

RESUMO

Parotid glands are exocrine glands that release saliva into the oral cavity. Acinar cells of parotid glands produce many secretory granules (SGs) that contain the digestion enzyme amylase. After the generation of SGs in the Golgi apparatus, they mature by enlarging and membrane remodeling. VAMP2, which is involved in exocytosis, accumulates in the membrane of mature SGs. The remodeling of SG membranes is regarded as a preparation process for exocytosis but its detailed mechanism remains unknown. To address that subject, we investigated the secretory ability of newly formed SGs. Although amylase is a useful indicator of secretion, the cell leakage of amylase might affect the measurement of secretion. Thus, in this study, we focused on cathepsin B (CTSB), a lysosomal protease, as an indicator of secretion. It has been reported that some procathepsin B (pro-CTSB), which is a precursor of CTSB, is initially sorted to SGs after which it is transported to lysosomes by clathrin-coated vesicles. Because pro-CTSB is processed to mature CTSB after its arrival in lysosomes, we can distinguish between the secretion of SGs and cell leakage by measuring the secretion of pro-CTSB and mature CTSB, respectively. When acinar cells isolated from parotid glands were stimulated with isoproterenol (Iso), a ß-adrenergic agonist, the secretion of pro-CTSB was increased. In contrast, mature CTSB was not detected in the medium although it was abundant in the cell lysates. To prepare parotid glands rich in newly formed SGs, the depletion of per-existing SGs was induced by an intraperitoneal injection of Iso into rats. At 5 h after that injection, newly formed SGs were observed in parotid acinar cells and the secretion of pro-CTSB was also detected. We confirmed that the purified newly formed SGs contained pro-CTSB, but not mature CTSB. At 2 h after Iso injection, few SGs were observed in the parotid glands and the secretion of pro-CTSB was not detected, which proved that the Iso injection depleted pre-existing SGs and the SGs observed at 5 h were newly formed after the Iso injection. These results suggest that newly formed SGs have a secretory ability prior to membrane remodeling.


Assuntos
Amilases , Catepsina B , Animais , Ratos , Agonistas Adrenérgicos beta/farmacologia , Amilases/metabolismo , Catepsina B/metabolismo , Grânulos Citoplasmáticos/metabolismo , Isoproterenol/farmacologia , Glândula Parótida/metabolismo , Vesículas Secretórias/metabolismo
12.
Life Sci ; 322: 121644, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004731

RESUMO

Altered sensitivity to the chronotropic and inotropic effects of catecholamines and reduction in ß1/ß2-adrenoceptor (ß1/ß2-AR) ratio were reported in failing and in senescent human heart, as well as in isolated atria and ventricle of rats submitted to stress. This was due to downregulation of ß1-AR with or without up-regulation of ß2-AR. AIMS: To investigate the stress-induced behavior of ß1-AR in the heart of mice expressing a non-functional ß2-AR subtype. The guiding hypothesis is that the absence of ß2-AR signaling will not affect the behavior of ß1-AR during stress and that those are independent processes. MATERIALS AND METHODS: The chronotropic and inotropic responses to ß-AR agonists in isolated atria of stressed mice expressing a non-functional ß2-AR were analyzed. The mRNA and protein expressions of ß1- and ß2-AR were also determined. KEY FINDINGS: No deaths were observed in mice under stress protocol. Atria of stressed mice displayed reduced sensitivity to isoprenaline compared to the controls, an effect that was abolished by the ß2- and ß1-AR antagonists 50 nM ICI118,551 and 300 nM CGP20712A, respectively. Sensitivity and maximum response to the ß-agonists dobutamine and salbutamol were not altered by stress or ICI118,551. The responses to dobutamine and salbutamol were prevented by CGP20712A. The expression of ß1-AR was reduced at protein levels. SIGNIFICANCE: Collectively, our data provide evidence that the cardiac ß2-AR is not essential for survival in a stressful situation and that the stress-induced reduction of ß1-AR expression was independent of the ß2-AR presence.


Assuntos
Agonistas Adrenérgicos beta , Dobutamina , Humanos , Camundongos , Ratos , Animais , Dobutamina/farmacologia , Dobutamina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Átrios do Coração/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Albuterol/farmacologia , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/metabolismo
13.
Life Sci ; 324: 121692, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061127

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most widely studied interstitial lung disease. IPF eventually leads to respiratory insufficiency, lung cancer, and death. Carvedilol (CAR) is a third-generation ß-adrenergic receptor antagonist with an α1-blocking effect. CAR demonstrates antifibrotic activities in various experimental models of organ fibrosis. AIMS: This work is designed to explore the possible alleviating effects of CAR on bleomycin (BLM)-induced lung fibrosis in rats. MAIN METHODS: The BLM rat model of lung fibrosis was achieved by intratracheal delivery of a single dose of 5 mg/kg of BLM. Seven days following BLM injection, either prednisolone or CAR was orally administered at doses of 10 mg/kg once daily for 21 days to the rats. The actions of CAR were evaluated by lung oxidant/antioxidant parameters, protein concentration and total leucocyte count (TLC) in bronchoalveolar lavage fluid (BALF), fibrosis regulator-related genes along with the coexistent lung histological changes. KEY FINDINGS: CAR effectively decreased lung malondialdehyde level, increased superoxide dismutase activity, declined both protein concentration and TLC in BALF, downregulated TGF-ß1/α-SMA/Smad2/3 and STAT3 gene expressions, and repaired the damaged lung tissues. SIGNIFICANCE: CAR conferred therapeutic potential against BLM-induced lung fibrosis in rats, at least in part, to its antioxidant, anti-inflammatory, and antifibrotic activities. CAR could be utilized as a prospective therapeutic option in patients with lung fibrosis in clinical practice.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1 , Agonistas Adrenérgicos beta , Carvedilol , Reposicionamento de Medicamentos , Expressão Gênica , Fibrose Pulmonar Idiopática , Bleomicina , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Animais , Ratos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Transcrição STAT3/genética , Actinas/genética , Modelos Animais de Doenças , Masculino , Ratos Endogâmicos
14.
Biomed Pharmacother ; 160: 114355, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739761

RESUMO

ß-adrenergic receptors (ßARs) belong to a key molecular targets that regulate the most important processes occurring in the human organism. Although over the last decades a zebrafish model has been developed as a model complementary to rodents in biomedical research, the role of ß2AR in regulation of pathological and toxicological effects remains to elucidate. Therefore, the study aimed to clarify the role of ß2AR with a particular emphasis on the distinct role of subtypes A and B of zebrafish ß2AR. As model compounds selective ß2AR agonists - (R,R)-fenoterol ((R,R)-Fen) and its new derivatives: (R,R)-4'-methoxyfenoterol ((R,R)-MFen) and (R,R)-4'-methoxy-1-naphtylfenoterol ((R,R)-MNFen) - were tested. We described dose-dependent changes observed after fenoterols exposure in terms of general toxicity, cardiotoxicity and neurobehavioural responses. Subsequently, to better characterise the role of ß2-adrenergic stimulation in zebrafish, we have performed a series of molecular docking simulations. Our results indicate that (R,R)-Fen displays the highest affinity for subtype A of zebrafish ß2AR and ß2AAR might be involved in pigment depletion. (R,R)-MFen shows the lowest affinity for zebrafish ß2ARs out of the tested fenoterols and this might be associated with its cardiotoxic and anxiogenic effects. (R,R)-MNFen displays the highest affinity for subtype B of zebrafish ß2AR and modulation of this receptor might be associated with the development of malformations, increases locomotor activity and induces a negative chronotropic effect. Taken together, the presented data offer insights into the functional responses of the zebrafish ß2ARs confirming their intraspecies conservation, and support the translation of the zebrafish model in pharmacological and toxicological research.


Assuntos
Fenoterol , Peixe-Zebra , Animais , Humanos , Fenoterol/farmacologia , Simulação de Acoplamento Molecular , Agonistas Adrenérgicos beta/farmacologia , Transdução de Sinais
15.
Toxicol Lett ; 378: 10-18, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822333

RESUMO

ß2-agonists are used for the treatment of bronchoconstriction, but also abused in doping. Beside an ergogenic activity ß2-agonists may have also anabolic activity. Therefore, we investigated the anabolic activity and associated molecular mechanisms of Salbutamol (SAL) and Formoterol (FOR) alone, as well as in combination in C2C12 myotubes. In differentiated C2C12 cells, dose-dependent effects of SAL and FOR (alone/in combination) on myotube diameter, myosin heavy chain (MHC) protein expression and the mRNA expression of genes involved in hypertrophy were analyzed. ß2-adrenoceptor 2 (ADRB2), androgen receptor (AR) and estrogen receptor (ER) inhibitors, as well as dexamethasone (Dexa) were co-incubated with the ß2-agonists and myotube diameter was determined. SAL and FOR treatment significantly induced hypertrophy and increased MHC expression and the mRNA expression of Igf1, mTOR, PIk3r1 and AMpKa2. In contrast to an ER inhibitor, the ADRB2 and AR inhibitors, as well as Dexa antagonized FOR and SAL induced hypertrophy. Combined treatment with SAL and FOR resulted in significant additive effects on myotube diameter and MHC expression. Future clinical studies are needed to prove this effect in humans and to evaluate this finding with respect to antidoping regulations.


Assuntos
Albuterol , Fibras Musculares Esqueléticas , Humanos , Albuterol/toxicidade , Fumarato de Formoterol/toxicidade , Fumarato de Formoterol/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Hipertrofia/metabolismo , Penicilinas/metabolismo , Penicilinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculo Esquelético , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia
16.
Physiol Rep ; 11(1): e15549, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36597221

RESUMO

Efficacy of therapies that target the downstream nitric oxide (NO) pathway in pulmonary arterial hypertension (PAH) depends on the bioavailability of NO. Reduced NO level in PAH is secondary to "uncoupling" of endothelial nitric oxide synthase (eNOS). Stimulation of ß3 adrenergic receptors (ß3 ARs) may lead to the recoupling of NOS and therefore be beneficial in PAH. We aimed to examine the efficacy of ß3 AR agonism as a novel pathway in experimental PAH. In hypoxia (5 weeks) and Sugen hypoxia (hypoxia for 5 weeks + SU5416 injection) models of PAH, we examined the effects of the selective ß3 AR agonist CL316243. We measured echocardiographic indices and invasive right ventricular (RV)-pulmonary arterial (PA) hemodynamics and compared CL316243 with riociguat and sildenafil. We assessed treatment effects on RV-PA remodeling, oxidative stress, and eNOS glutathionylation, an oxidative modification that uncouples eNOS. Compared with normoxic mice, RV systolic pressure was increased in the control hypoxic mice (p < 0.0001) and Sugen hypoxic mice (p < 0.0001). CL316243 reduced RV systolic pressure, to a similar degree to riociguat and sildenafil, in both hypoxia (p < 0.0001) and Sugen hypoxia models (p < 0.03). CL316243 reversed pulmonary vascular remodeling, decreased RV afterload, improved RV-PA coupling efficiency and reduced RV stiffness, hypertrophy, and fibrosis. Although all treatments decreased oxidative stress, CL316243 significantly reduced eNOS glutathionylation. ß3 AR stimulation improved RV hemodynamics and led to beneficial RV-PA remodeling in experimental models of PAH. ß3 AR agonists may be effective therapies in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Pulmonar/metabolismo , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Artéria Pulmonar/metabolismo , Hemodinâmica , Agonistas Adrenérgicos beta/farmacologia , Hipóxia
17.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614209

RESUMO

Physiologically, ß-adrenoceptors are major regulators of lipid metabolism, which may be reflected in alterations in lipid droplet dynamics. ß-adrenoceptors have also been shown to participate in breast cancer carcinogenesis. Since lipid droplets may be seen as a hallmark of cancer, the present study aimed to investigate the role of ß-adrenoceptors in the regulation of lipid droplet dynamics in MCF-7 breast cancer cells. Cells were treated for up to 72 h with adrenaline (an endogenous adrenoceptor agonist), isoprenaline (a non-selective ß-adrenoceptor agonist) and salbutamol (a selective ß2-selective agonist), and their effects on lipid droplets were evaluated using Nile Red staining. Adrenaline or isoprenaline, but not salbutamol, caused a lipid-accumulating phenotype in the MCF-7 cells. These effects were significantly reduced by selective ß1- and ß3-antagonists (10 nM atenolol and 100 nM L-748,337, respectively), indicating a dependence on both ß1- and ß3-adrenoceptors. These effects were dependent on the cAMP signalling pathway, involving both protein kinase A (PKA) and cAMP-dependent guanine-nucleotide-exchange (EPAC) proteins: treatment with cAMP-elevating agents (forskolin or 8-Br-cAMP) induced lipid droplet accumulation, whereas either 1 µM H-89 or 1 µM ESI-09 (PKA or EPAC inhibitors, respectively) abrogated this effect. Taken together, the present results demonstrate the existence of a ß-adrenoceptor-mediated regulation of lipid droplet dynamics in breast cancer cells, likely involving ß1- and ß3-adrenoceptors, revealing a new mechanism by which adrenergic stimulation may influence cancer cell metabolism.


Assuntos
Gotículas Lipídicas , Neoplasias , Humanos , Isoproterenol/farmacologia , Células MCF-7 , Proteínas Quinases Dependentes de AMP Cíclico , Agonistas Adrenérgicos beta/farmacologia , Receptores Adrenérgicos beta , Albuterol/farmacologia , Epinefrina , Fatores de Troca do Nucleotídeo Guanina , Antagonistas Adrenérgicos beta/farmacologia
18.
Cardiovasc Res ; 119(1): 195-212, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35394031

RESUMO

AIMS: Blood eosinophil (EOS) counts and EOS cationic protein (ECP) levels associate positively with major cardiovascular disease (CVD) risk factors and prevalence. This study investigates the role of EOS in cardiac hypertrophy. METHODS AND RESULTS: A retrospective cross-section study of 644 consecutive inpatients with hypertension examined the association between blood EOS counts and cardiac hypertrophy. Pressure overload- and ß-adrenoreceptor agonist isoproterenol-induced cardiac hypertrophy was produced in EOS-deficient ΔdblGATA mice. This study revealed positive correlations between blood EOS counts and left ventricular (LV) mass and mass index in humans. ΔdblGATA mice showed exacerbated cardiac hypertrophy and dysfunction, with increased LV wall thickness, reduced LV internal diameter, and increased myocardial cell size, death, and fibrosis. Repopulation of EOS from wild-type (WT) mice, but not those from IL4-deficient mice ameliorated cardiac hypertrophy and cardiac dysfunctions. In ΔdblGATA and WT mice, administration of ECP mEar1 improved cardiac hypertrophy and function. Mechanistic studies demonstrated that EOS expression of IL4, IL13, and mEar1 was essential to control mouse cardiomyocyte hypertrophy and death and cardiac fibroblast TGF-ß signalling and fibrotic protein synthesis. The use of human cardiac cells yielded the same results. Human ECP, EOS-derived neurotoxin, human EOS, or murine recombinant mEar1 reduced human cardiomyocyte death and hypertrophy and human cardiac fibroblast TGF-ß signalling. CONCLUSION: Although blood EOS counts correlated positively with LV mass or LV mass index in humans, this study established a cardioprotective role for EOS IL4 and cationic proteins in cardiac hypertrophy and tested a therapeutic possibility of ECPs in this human CVD.


Assuntos
Eosinófilos , Hipertrofia Ventricular Esquerda , Camundongos , Humanos , Animais , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/prevenção & controle , Eosinófilos/metabolismo , Estudos Retrospectivos , Interleucina-4/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Miócitos Cardíacos/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Remodelação Ventricular
19.
Nutr Health ; 29(1): 5-7, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35702043

RESUMO

Background: The overall prevalence of diabetes in the world has risen substantially in the past several decades, so have complications and mortalities associated with it. Aim: Prevention strategies for diabetes thus become an urgent public health need for reducing the burden of diabetes. Methods: Ractopamine, a ß1/2-adrenergic receptor agonist, has been approved for use in finishing swine, cattle, and turkey in countries where meat exporting brings tremendous economic benefits. This leanness enhancer is recently found to be a full agonist at trace amine-associated receptor 1 also. A thorough literature review was performed to assess possible effects of ractopamine on glucose metabolism. Results: Activating ß-adrenoceptor could lead to glucose-lowering effects independent of insulin while activation on trace amine-associated receptor 1 induces an incretin-like signaling on insulin-secreting pancreatic ß-cells. Conclusion: Accordingly, it is hypothesized that long-term consuming meat containing ractopamine might lower the risk of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , Humanos , Animais , Suínos , Bovinos , Agonistas Adrenérgicos beta/uso terapêutico , Agonistas Adrenérgicos beta/farmacologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Fenetilaminas/uso terapêutico , Fenetilaminas/farmacologia , Carne
20.
Br J Pharmacol ; 180(10): 1304-1315, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36495270

RESUMO

BACKGROUND AND AIM: Standard pharmacological analysis of agonist activity utilises measurements of receptor-mediated responses at a set time-point, or at the peak response level, to characterise ligands. However, the occurrence of non-equilibrium conditions may dramatically impact the properties of the response being measured. Here we have analysed the initial kinetic phases of cAMP responses to ß2 -adrenoceptor agonists in HEK293 cells expressing the endogenous ß2 -adrenoceptor at extremely low levels. EXPERIMENTAL APPROACH: The kinetics of ß2 -adrenoceptor agonist-stimulated cAMP responses were monitored in real-time, in the presence and absence of antagonists, in HEK293 cells expressing the cAMP GloSensor™ biosensor. Potency (EC50 ) and efficacy (Emax ) values were determined at the peak of the agonist GloSensor™ response and compared to kinetic parameters L50 and IRmax values derived from initial response rates. KEY RESULTS: The partial agonists salbutamol and salmeterol displayed reduced relative IRmax values (with respect to isoprenaline) when compared with their Emax values. Except for the fast dissociating bisoprolol, preincubation with ß2 -adrenoceptor antagonists produced a large reduction in the isoprenaline peak response due to a state of hemi-equilibrium in this low receptor reserve system. This effect was exacerbated when IRmax parameters were measured. Furthermore, bisoprolol produced a large reduction in isoprenaline IRmax consistent with its short residence time. CONCLUSIONS AND IMPLICATIONS: Kinetic analysis of real-time signalling data can provide valuable insights into the hemi-equilibria that can occur in low receptor reserve systems with agonist-antagonist interactions, due to incomplete dissociation of antagonist whilst the peak agonist response is developing.


Assuntos
Agonistas Adrenérgicos beta , Bisoprolol , Humanos , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta , Células HEK293 , Isoproterenol/farmacologia , Cinética , Receptores Adrenérgicos beta 2 , AMP Cíclico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...